106 research outputs found

    Spatial analyses of wildlife contact networks

    Get PDF
    We thank Kathy Horadam for useful discussions about the graph dissimilarity measures and Meggan Craft for reading an early draft of the manuscript and for her helpful advice and encouragement.Peer reviewedPublisher PD

    Genetic diversity in cytokines associated with immune variation and resistance to multiple pathogens in a natural rodent population

    Get PDF
    Pathogens are believed to drive genetic diversity at host loci involved in immunity to infectious disease. To date, studies exploring the genetic basis of pathogen resistance in the wild have focussed almost exclusively on genes of the Major Histocompatibility Complex (MHC); the role of genetic variation elsewhere in the genome as a basis for variation in pathogen resistance has rarely been explored in natural populations. Cytokines are signalling molecules with a role in many immunological and physiological processes. Here we use a natural population of field voles (Microtus agrestis) to examine how genetic diversity at a suite of cytokine and other immune loci impacts the immune response phenotype and resistance to several endemic pathogen species. By using linear models to first control for a range of non-genetic factors, we demonstrate strong effects of genetic variation at cytokine loci both on host immunological parameters and on resistance to multiple pathogens. These effects were primarily localized to three cytokine genes (Interleukin 1 beta (Il1b), Il2, and Il12b), rather than to other cytokines tested, or to membrane-bound, non-cytokine immune loci. The observed genetic effects were as great as for other intrinsic factors such as sex and body weight. Our results demonstrate that genetic diversity at cytokine loci is a novel and important source of individual variation in immune function and pathogen resistance in natural populations. The products of these loci are therefore likely to affect interactions between pathogens and help determine survival and reproductive success in natural populations. Our study also highlights the utility of wild rodents as a model of ecological immunology, to better understand the causes and consequences of variation in immune function in natural populations including humans

    Євангельські християни святі сіоністи: особливості життя й побуту

    Get PDF
    У статті Р. Скакуна розглянуто, особливості життя, побуту й релігійного культу євангельських християн святих сіоністів („мурашковців”), громада яких існує в смт. КомінтернівськеОдеської області. Ключові слова: євангельські християни святі сіоністи, мурашковці, юдаїстичний культ, субота, заповіді, релігійна громада.The article discusses a sectarian group of the Evangelical Christians Saint Zionists, also known as Murashkovtsi, which presently exists as a community of 435 people in the town of Kominternivske, Odessa region. The peculiar features of the group, which emerged in early 1930’s from the popular Pentecostalism, include its mystical and ecstatic cult, which gradually declines, and its judaistic system of practical ritualistic prescriptions. The group is also characterized by endogamy, strong solidarity and the persisting model of traditional extended family. Keywords: Evangelical Christians Saint Zionists, Murashkovtsi, judaistic cult, Sabbath, ritualistic prescriptions, religious community

    A model for leptospire dynamics and control in the Norway rat (Rattus norvegicus) the reservoir host in urban slum environments

    Get PDF
    Leptospirosis is a zoonosis that humans can contract via contact with animal reservoirs directly or with water contaminated with their urine. The primary reservoir of pathogenic leptospires within urban slum environments is the Norway rat (Rattus norvegicus). Motivated by the annual outbreaks of human leptospirosis in slum urban settings, the within population infection dynamics of the Norway rat were investigated in Pau da Lima, an community in Salvador, Brazil. A mechanistic model of the dynamics of leptospire infection was informed by extensive field and laboratory data was developed and explored analytically. To identify the intraspecific transmission route of most importance, a global sensitivity analysis of the basic reproduction number to its components was performed. In addition, different methods of rodent control were investigated by calculating target reproduction numbers. Our results suggest environmental transmission plays an important role in the maintenance of infection in the rodent population. To control numbers of wild Norway rats, combinations of controls are recommended but environmental control should also be investigated to reduce prevalence of infection in rats

    Modeling the epidemiological history of plague in Central Asia: Palaeoclimatic forcing on a disease system over the past millennium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human cases of plague (<it>Yersinia pestis</it>) infection originate, ultimately, in the bacterium's wildlife host populations. The epidemiological dynamics of the wildlife reservoir therefore determine the abundance, distribution and evolution of the pathogen, which in turn shape the frequency, distribution and virulence of human cases. Earlier studies have shown clear evidence of climatic forcing on contemporary plague abundance in rodents and humans.</p> <p>Results</p> <p>We find that high-resolution palaeoclimatic indices correlate with plague prevalence and population density in a major plague host species, the great gerbil (<it>Rhombomys opimus</it>), over 1949-1995. Climate-driven models trained on these data predict independent data on human plague cases in early 20th-century Kazakhstan from 1904-1948, suggesting a consistent impact of climate on large-scale wildlife reservoir dynamics influencing human epidemics. Extending the models further back in time, we also find correspondence between their predictions and qualitative records of plague epidemics over the past 1500 years.</p> <p>Conclusions</p> <p>Central Asian climate fluctuations appear to have had significant influences on regional human plague frequency in the first part of the 20th century, and probably over the past 1500 years. This first attempt at ecoepidemiological reconstruction of historical disease activity may shed some light on how long-term plague epidemiology interacts with human activity. As plague activity in Central Asia seems to have followed climate fluctuations over the past centuries, we may expect global warming to have an impact upon future plague epidemiology, probably sustaining or increasing plague activity in the region, at least in the rodent reservoirs, in the coming decades.</p> <p>See commentary: <url>http://www.biomedcentral.com/1741-7007/8/108</url></p

    Host Range and Genetic Diversity of Arenaviruses in Rodents, United Kingdom

    Get PDF
    During a study to extend our knowledge of the host range and genetic diversity of arenaviruses in Great Britain, 66 of 1,147 rodent blood samples tested for antibody, and 127 of 482 tested by PCR, were found positive. All sequences most closely resembled those of previously identified lymphocytic choriomeningitis virus

    An Immunological Marker of Tolerance to Infection in Wild Rodents

    Get PDF
    Hosts are likely to respond to parasitic infections by a combination of resistance (expulsion of pathogens) and tolerance (active mitigation of pathology). Of these strategies, the basis of tolerance in animal hosts is relatively poorly understood, with especially little known about how tolerance is manifested in natural populations. We monitored a natural population of field voles using longitudinal and cross-sectional sampling modes and taking measurements on body condition, infection, immune gene expression, and survival. Using analyses stratified by life history stage, we demonstrate a pattern of tolerance to macroparasites in mature compared to immature males. In comparison to immature males, mature males resisted infection less and instead increased investment in body condition in response to accumulating burdens, but at the expense of reduced reproductive effort. We identified expression of the transcription factor Gata3 (a mediator of Th2 immunity) as an immunological biomarker of this tolerance response. Time series data for individual animals suggested that macroparasite infections gave rise to increased expression of Gata3, which gave rise to improved body condition and enhanced survival as hosts aged. These findings provide a clear and unexpected insight into tolerance responses (and their life history sequelae) in a natural vertebrate population. The demonstration that such responses (potentially promoting parasite transmission) can move from resistance to tolerance through the course of an individual’s lifetime emphasises the need to incorporate them into our understanding of the dynamics and risk of infection in the natural environment. Moreover, the identification of Gata3 as a marker of tolerance to macroparasites raises important new questions regarding the role of Th2 immunity and the mechanistic nature of the tolerance response itself. A more manipulative, experimental approach is likely to be valuable in elaborating this further

    Quantification of Leptospira interrogans Survival in Soil and Water Microcosms

    Get PDF
    Leptospira interrogans is the etiological agent of leptospirosis, a globally distributed zoonotic disease. Human infection usually occurs through skin exposure with water and soil contaminated with the urine of chronically infected animals. In this study, we aimed to quantitatively characterize the survival of Leptospira interrogans serovar Copenhageni in environmental matrices. We constructed laboratory microcosms to simulate natural conditions and determined the persistence of DNA markers in soil, mud, spring water and sewage using a quantitative PCR (qPCR) and a propidium monoazide (PMA)-qPCR assay. We found that L. interrogans does not survive at high concentrations in the tested matrices. No net growth was detected in any of the experimental conditions and in all cases the concentration of the DNA markers targeted decreased from the beginning of the experiment following an exponential decay with a decreasing decay rate over time. After 12 and 21 days of incubation the spiked concentration of 106L. interrogans cells/ml or g decreased to approximately 100 cells/ml or g in soil and spring water microcosms, respectively. Furthermore, culturable L. interrogans persisted at concentrations under the limit of detection by PMA-qPCR or qPCR for at least 16 days in soil and 28 days in spring water. Altogether, our findings suggest that the environment is not a multiplication reservoir but a temporary carrier of L. interrogans Copenhageni, although the observed prolonged persistence at low concentrations may still enable the transmission of the disease.IMPORTANCE Leptospirosis is a zoonotic disease caused by spirochetes of the genus Leptospira that primarily affects impoverished populations worldwide. Although leptospirosis is transmitted by contact with water and soil, little is known about the ability of the pathogen to survive in the environment. In this study, we quantitatively characterized the survival of L. interrogans in environmental microcosms and found that although it cannot multiply in water, soil or sewage, it survives for extended time periods (days to weeks depending on the matrix). The survival parameters obtained here may help to better understand the distribution of pathogenic Leptospira in the environment and improve the predictions of human infection risks in areas where such infections are endemic

    Effects of an IgE receptor polymorphism acting on immunity, susceptibility to infection, and reproduction in a wild rodent

    Get PDF
    The genotype of an individual is an important predictor of their immune function, and subsequently, their ability to control or avoid infection and ultimately contribute offspring to the next generation. However, the same genotype, subjected to different intrinsic and/or extrinsic environments, can also result in different phenotypic outcomes, which can be missed in controlled laboratory studies. Natural wildlife populations, which capture both genotypic and environmental variability, provide an opportunity to more fully understand the phenotypic expression of genetic variation. We identified a synonymous polymorphism in the high-affinity Immunoglobulin E (IgE) receptor (GC and non-GC haplotypes) that has sex-dependent effects on immune gene expression, susceptibility to infection, and reproductive success of individuals in a natural population of field voles (Microtus agrestis). We found that the effect of the GC haplotype on the expression of immune genes differed between sexes. Regardless of sex, both pro-inflammatory and anti-inflammatory genes were more highly relatively expressed in individuals with the GC haplotype than individuals without the haplotype. However, males with the GC haplotype showed a stronger signal for pro-inflammatory genes, while females showed a stronger signal for anti-inflammatory genes. Furthermore, we found an effect of the GC haplotype on the probability of infection with a common microparasite, Babesia microti, in females – with females carrying the GC haplotype being more likely to be infected. Finally, we found an effect of the GC haplotype on reproductive success in males – with males carrying the GC haplotype having a lower reproductive success. This is a rare example of a polymorphism whose consequences we are able to follow across immunity, infection, and reproduction for both males and females in a natural population
    corecore